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Young diagrams, supercharacters of OSp(M/N) and 
modification rules 

C J Cummins and R C King 
Mathematics Department, University of Southampton, Southampton SO9 5NH,  UK 

Received 18 June 1986 

Abstract. The supercharacter of OSp( M /  N )  associated with an arbitrary Young diagram 
is defined. The distinction is made between OSp( M /  N )  standard and non-standard 
supercharacters. The corresponding modification rule which may be used to express a 
non-standard supercharacter in terms of standard supercharacters is presented, exemplified 
and proved. This rule involves the removal of N / 2  + 1 boundary strips from the Young 
diagram. In the case N = 0 the rule reduces to the well known rule appropriate to O ( M ) .  
For a non-standard supercharacter corresponding to a typical irreducible representation 
of OSp( M /  N )  the modification yields a single typical standard supercharacter. On the 
other hand, for a non-standard supercharacter corresponding to an atypical irreducible 
representation the rule yields a linear combination of atypical standard supercharacters. 

1. Introduction 

The specification of all the inequivalent finite-dimensional irreducible representations 
of the basic classical Lie superalgebras was completed by Kac (1978) in terms of 
Kac-Dynkin labels. He also gave an explicit formula for both the character and the 
supercharacter of each typical irreducible representation whilst pointing out the 
difficulty of trying to extend this work to cover the case of atypical irreducible 
representations. 

Alternative approaches to this subject (Dondi and Jarvis 1981, Balantekin and Bars 
1981a, b, 1982, Bars et a1 1983, Farmer and Jarvis 1984, Bars 1984, Delduc and Gourdin 
1984, 1985, Morel et a1 1985, Gourdin 1986) have exploited Young diagrams in the 
case of both U ( M / N )  and OSp(M/N) .  This has the merit of leading to certain 
formulae for the analysis of tensor products and branching rules (Dondi and Jarvis 
1981, King 1983, Wybourne 1984) which are very succinct but suffer from the drawback 
that when they involve atypical irreducible representations they must necessarily be 
interpreted with considerable care. 

Nonetheless the great success of Young diagram methods in accounting, in just 
this same succinct way, for many properties of irreducible representations of U(M),  
O ( M )  and Sp(M) suggests that it is worth trying to generalise from the Lie algebra 
to the Lie superalgebra context. The key step in the Lie algebra case is to realise that 
great simplifications occur if M is taken to be arbitrarily large. More precisely, one 
considers characters depending on a countably infinite set of class variables. The price 
to be paid for this simplification, however, is that on restriction to a finite set of 
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variables use must be made of modification rules (King 1971, Black et al 1983). These 
arise naturally from the existence of various determinantal expansions of characters 
of irreducible representations and allow the very efficient evaluation of tensor products, 
branching rules and symmetrised products (plethysms). 

Similar modification rules for OSp( M /  N )  have recently been proposed without 
proof (Farmer 1986a, b, King 1986). In this paper a somewhat simpler form of the 
modification rule is derived. The proof makes use once again of determinantal 
expansions (El Samra and King 1979). The new rule is shown to be equivalent to the 
previous more complicated conjectures. 

In the next section some notational preliminaries are dealt with and the modification 
rules appropriate to U(M),  O ( M )  and Sp(M) are written down followed by the 
modification rule for OSp( M /  N )  which is the main subject of this paper. It is a moot 
point whether one chooses to work in terms of characters or supercharacters of 
OSp( M /  N ) ,  but it should be stressed that the modification rule obtained here, although 
expressed in terms of supercharacters, applies equally well to both characters and 
supercharacters of OSp( M /  N ) .  The rationale behind our concentration on super- 
characters is the fact that they are associated with the fully OSp(M/N)  invariant 
supertrace operation (Balantekin and Bars 1981a). Nonetheless it is a strength of the 
Young diagram approach that it is possible to pass from character to supercharacter 
and vice versa merely by making certain changes of sign. These will be referred to 
where appropriate in 0 3 in which a generating function is used to define the super- 
characters of OSp(M/ N )  associated with Young diagrams, and important results on 
branching rules and tensor products which follow from this definition are also stated. 

In § 4 determinantal expansions of supercharacters are used to recast the required 
modification rule in a more amenable form, and the rule’s validity is finally proved in 
3 5 .  Whilst the generating function, the branching rule and some details of the proof 
differ in various sign factors as between characters and supercharacters, the tensor 
product rule, the determinantal expansions and the modification rule itself all apply 
equally well to both characters and supercharacters. 

The modification rule applies to all non-standard supercharacters, whether typical 
or atypical. The distinction between these two cases is made in 6 where it is shown 
in particular that each non-standard typical supercharacter is equivalent under 
modification to a single standard typical supercharacter. This contrasts with the atypical 
case where after modification a linear combination of standard atypical supercharacters 
is obtained. 

The paper concludes in § 7 with some applications of the modification rule and a 
warning that much remains to be done in understanding the problems arising from 
the lack of full reducibility of some representations. 

As a final introductory word we would remark that our terminology differs somewhat 
from that adopted by other authors who make great use of the word ‘supertableaux’. 
Instead we prefer the use of ‘Young diagram’ to describe the diagram corresponding 
to a partition label. This allows a distinction to be made, although it is not required 
in the present paper, between ‘diagram’ and ‘tableaux’ where the former consists of 
boxes or nodes whilst the latter is an array resulting from filling the boxes or replacing 
the nodes by entries, usually integers, subject to some ordering rules. Thus, partitions 
label Young diagrams which specify characters or supercharacters, which may be 
evaluated by enumerating tableaux or supertableaux. It seems worthwhile emphasising 
this choice of terminology to try and bring into harmony the work of mathematicians 
and theoretical physicists. 
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2. Young diagrams and modification rules 

Each partition A = ( A , ,  A * ,  . . . , A,) with integer parts satisfying A I  2 A 2  A, > 0 
serves to specify a Young diagram FA consisting of an array of IA I = A + A 2  + . . . + A, 
boxes in p left-adjusted rows of lengths A , ,  A* ,  . . . , A,. Typically for A = (5421). 

. . . 

F A =  P 
L 

The Frobenius rank r of A is the number of boxes on the main diagonal of F A  so that 
in the above example r = 3. The conjugate partition A '  is defined to be that partition 
A '  which specifies the Young diagram FA' obtained from F A  by interchanging rows 
and columns. 

In the above example 

w (2.2) 

F A ' =  D+ ii 
so that A ' =  (4331). 

Partitions have been widely used in the specification of irreducible representations 
of all the classical Lie groups U( M ) ,  O( M )  and Sp( M ) .  The characters of the covariant 
tensor irreducible representations of these groups are conveniently denoted by (Little- 
wood 1950, Black et a1 1983) {A}, [ A ]  and (A) ,  respectively. These characters and the 
corresponding Young diagram FA are said to be U( M ) ,  O( M )  and Sp( M )  standard 
if and only if the number of parts, p = A i ,  of the partition A is less than or equal to 
M, [ M / 2 ]  and M / 2 ,  respectively. As noted in the introduction, although it is possible 
to find formal expressions for Kronecker products, branching rules, etc, when M is 
arbitrarily large, on restriction to a particular finite value of M some characters will 
be non-standard and it is necessary to apply modification rules (King 1971, Black et 
a1 1983, Koike and Terada 1985) relating them to standard characters. These rules 
take the form: 

U ( M )  { A } = O  if h = A ;  - M - 1 3 0 (2.3) 
O ( M )  [ A ] = ( - l ) ' + ' & [ A  - h ]  if h = 2 A ' , -  M > O  (2.4) 
SP(M) (A)=(-l)'(A - h )  if h = 2A; - M - 2 3 0 (2.5) 

where E is the character of O( M )  given by the determinant of each group element and 
where A - h specifies a diagram F A - h  obtained from FA by the removal of a continuous 
boundary strip of boxes of length h starting at the foot of the first column of F A  and 
extending over c columns. The boundary strip of length h is said to be removable if 
h > 0 for O ( M )  and h 3 0 for Sp( M )  and if the resulting diagram F A - h  is regular in 
the sense that it coincides with a Young diagram F N  for some partition p. In such a 
case [ A  - h ]  and (A - h )  are to be interpreted as [ p ]  and ( p ) ,  respectively. The boundary 
strip is said to be not removable if F A e h  is irregular in that no partition exists for 
which F A - h  = F p .  In this case [ A  - h ]  and ( A  - h )  are to be interpreted as being 
identically zero. 
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In the case A = (5 4 32 1 2 ) ,  for example, strips of lengths h = 7 and 8 are not removable 
and removable, respectively, as can be seen from the following diagrams 

L 

In the latter case FA-h  = FA-'= F p  with p = (5 22). 
It should be noted that the rules themselves imply the standardness conditions 

referred to above. If necessary, they are to be applied more than once until h < O  for 
U( M ) ,  h S 0 for O( M )  and h < 0 for Sp( M )  or until the character in question is shown 
to be zero. In this way each non-standard character is either zero or equivalent to *1  
or * E  times a standard character. It should be noted that through these modification 
rules each non-vanishing non-standard character associated with F A  is expressed in 
terms of a single standard character associated with F p  and correspondingly with a 
single irreducible representation. 

In the case of OSp(M/N)  a similar notation and terminology may be employed 
in that supercharacters associated with covariant tensor representations of OSp( M /  N )  
may be denoted by [A] .  Such a supercharacter and the corresponding Young diagram 
F A  are said to be OSp( M /  N )  standard if and only if A;VIZ+, 6 [ M / 2 ]  or equivalently 
if and only if F A  fits inside a hook-shaped region of arm width [ M / 2 ]  and leg width 
N / 2  as shown: 

U 
N / 2  

Thus in the case of OSp(7/4) [3'213] is standard but [43312] is non-standard: 

! I  
I- 

I 
I 

I i 

To justify this claim it is of course necessary to provide the modification rule which 
relates non-standard supercharacters of OSp( M /  N )  to standard supercharacters. This 



Young diagrams and modification rules 3107 

rule in the form which most closely resembles (2.4) is 

with 

hj =2(A; - j +  1 )  - M +  N >  0 (2.8) 

and 

1 = N / 2 +  1 .  (2.9) 

E is the supercharacter of OSp(M/N)  given by the superdeterminant of each 
supergroup element, (j) signifies any sequence of integers ( jl , j,, . . . , j,) such that 
1 3 j ,  > j, > . . . > j, 3 1 and the notation is such that A - h, specifies a diagram 
obtained from FA by the removal of a continuous boundary strip of boxes of length 
h, starting at the foot of the j th  column and extending over cj columns to end in the 
( j +  cj - 1)th column. The order in which the strips are removed is immaterial but in 
order to avoid stating additional rules for overlapping strips it is convenient to start 
at the rightmost column specified by j ,  and to follow the sequence (j). 

Unlike the O ( M )  case, for which E may be identified with the character [ l M ]  
associated with FIM, in the case of OSp(M/N) ,  E may not be identified with any 
supercharacter associated with a Young diagram F p .  

It is to be noted that the modification rule (2.7) for OSp(M/N)  reduces as one 
would wish to the rule (2.4) for O ( M )  in the case N = 0. 

As for O( M )  and Sp( M )  the modification rule (2.7) for OSp( M /  N )  may be iterated, 
leading to the formula: 

k - 1  
[ A ]  = 2 ( - 1> (-l)c~~tc~~t'.'+c~x+'~k[A - hj, - hj2 -. . . - hj,]  (2.10) 

k = r  ( j )  

where r is the Frobenius rank of the partition p specifying that part F P  of F A  which 
is OSp(M/ N )  non-standard, i.e. the non-standard rank of [A]: 

(2.11) 

Note that now the sum extends in general over all columns of F A  in that ( j )  signifies 
any sequence of integers ( j ,  , j,, . . . , j,) such that A , 3 j, > j ,  > . . . > jk 3 1. Furthermore 
each term involves the removal of at least r boundary strips. It is not difficult to see 
that each removal decreases the Frobenius rank of the non-standard part of the diagram 
by one. Thus on the right-hand side of (2.10) all the resulting supercharacters are 
OSp(M/ N )  standard and no further modification is required or indeed allowed. 

As an illustration of the application of (2.7) consider the supercharacter [44] of 
OSp(4/4). In this case 1 = N / 2  + 1 = 3 whilst h, = 8, h,  = 6 and h, = 4. The strip of 
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length 8 is not removable so that (2.7) yields, in terms of Young diagrams 

Hence 

[44] = -~[43*2] + ~ [ 3 ~ 1 ] +  ~ ~ [ 2 ~ 1 ~ ] .  

The first two terms are still not OSp(4/4) standard. Applying (2.7) again we find 

[44]= - ~ ~ [ 4 2 ~ ] +  ~ ~ [ 3 2 ~ 1 ] - ~ ~ [ 2 ~ 1 ~ ] + 2 ~ ~ [ 1 ~ ] .  

This result can be found directly from (2.10) by noting that in this case r = 2 and h, = 2 
giving a third removable strip. 

3. Supercharacters of O S p ( M / N )  

The characters of irreducible representations of U( M ) ,  O( M )  and Sp( M )  denoted by 
{A}, [ A ]  and (A) ,  respectively, are denoted rather more precisely by { A ;  x}, [ A ;  x]  and 
( A ;  x), indicating that they are functions of x = (x I ,  x2, . . . , xM) where xi for i = 
1,2, . . . , M are the eigenvalues of the appropriate group elements realised as M x M 
matrices. These characters may be written down by making use of the character formula 
of Weyl appropriate to all the irreducible representations of all semi-simple Lie groups 
including the classical ones under consideration here (Weyl 1939). 

Such a formula covering all the irreducible representations of all the basic classical 
simple Lie superalgebras does not exist, although the case of all typical irreducible 
representations is covered by the supercharacter formula of Kac (1978). As a result 
it is particularly important when using Young diagram methods to define unam- 
biguously the supercharacter associated with each Young diagram. 

The approach adopted here is to make use of generating functions for such 
supercharacters. These are a natural extension of the following generating functions 
(Weyl 1939, Littlewood 1950) appropriate to the classical groups which may all be 
derived from Weyl's character formula: 

(3.3) 

The last pair of formulae involve the infinite S-function series evaluated by Little- 
wood (1950, p 238): 

(3.4) 
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whose inverses are 

B ( x )  = JJ ( 1  - xixj)-' = { p ;  x} 
i< j  B 

D ( x )  = n ( 1 - XiX,) -' = { s ; x}. (3.7) 
i s j  6 

It follows immediately that the characters of O( M )  and Sp( M )  are related to characters 
of U(M)  by the formulae 

(3.8) 

(3.9) 

[ A ;  x] = {A/C; x} 

{ A ;  x }  = [ A / D ;  x ]  

( A ;  X) = {A/A;  X} 

{ A ;  x} = ( A / B ;  x). 

(3.10) 

(3.11) 

The notation for infinite S-function series and operations involving them has been 
explained elsewhere (King 1975, Black et a1 1983). 

The generating function for the supercharacters of covariant tensor irreducible 
representations of U( M /  N) takes the form (Remmel 1984) 

n ( l - x i s a ) - ' n ( l - y j t b ) - ' , ( l - X i f b ) n ( l - y j s a )  
i,a j ,  b i, b j ,  a 

U(M/ N)  

(3.12) 

(3.13)  

where { A ;  x / y }  denotes the supercharacter of U( M/ N)  corresponding to the Young 
diagram FA.  

The analogous generating function for supercharacters of OSp( M /  N) ,  which do 
not necessarily correspond to irreducible representations, takes the form 

f l ( 1 - x i s a ) - ' f l ( 1 - y j t c ) - ' n  ( 1 - x i t c ) n  ( l -y jsa)  
i ,  a J - C  i,c j .  a 

OSP(M/N)  

n ( 1 - s a s b )  n ( 1 - t c t d )  n ( l - S a f c ) - '  
a s b  c c d  a, c 

(3.14) 

or more simply 

n ( 1 - x i s a ) - ' f l ( 1 - y j s a )  n ( l - S a S b ) = C I A ; x / y l { h ; s } .  (3.15) 
i, a j .  a a s b  

OSP( M/ N)  

In these formulae (3.12)-(3.15) x = ( x l ,  x 2 , .  . . x M )  and y = ( y , ,  y, ,  . . . , y N )  are such 
that, for i = 1,2, .  . . , M and j = 1,2,. . . , N, xi and yj are eigenvalues of the M x M 
and N x N matrices, respectively, of the Lie supergroups U( M/ N) and OSp( M /  N)  
restricted to U( M) x U( N )  and O( M )  x Sp( N). 

Having defined the required supercharacter of OSp(M/N)  by means of (3.15) it 
follows from (3.5) by the same arguments as in the Lie algebra case that 

[ A ;  x l y l =  {A/C; X/YI (3.16) 
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and also 

(3.17) 

The application of (3.1) and the related identity 

~ ( l - x , s , ) = ~ ( - l ) ' * ' { A ; ~ ) { A ' ;  S} 
1.11 A 

(3.1') 

to (3.13) immediately gives an expansion of the supercharacter { A ;  x / y }  of U(M/N)  
in terms of characters of U( M )  and U( N )  

(3.18) 

Similarly (3.15) may be used to derive the expansion of [ A ;  x / y ]  in terms of characters 
of O ( M )  and Sp(N)  

(3.19) 

It should be noted that these two results (3.18) and (3.19),  which follow from the 
definition of supercharacters based on the generating functions (3.13) and (3.15) 
respectively, could themselves serve to define the supercharacters. It is also worth 
pointing out that the relationship between characters and supercharacters of Lie 
superalgebras (Kac 1978) is such that for both U(M/N) and OSp(M/N)  it is only 
necessary to change every indeterminate y j  to -yj in (3.13),  (3.15),  (3.18) and (3.19) 
to pass from supercharacters to characters. In particular, this means that the characters 
of U( M /  N )  and OSp( M /  N )  associated with the supercharacters {A ; x / y }  and 
[ A ;  x l y ] ,  respectively, are defined by (3.18) and (3.19) simply through the omission 
of the sign factors ( - l ) ' & '  in agreement with branching rules given earlier (King 1983, 
Wybourne 1984). In what follows we have chosen to consistently work in terms of 
supercharacters but as stressed in the introduction the resulting modification rule (2.7) 
is true for both characters and supercharacters. 

If we now take x and y to be infinite sets of variables x = (xl ,  x 2 , .  . .) and y = 
( y , ,  y , ,  . . .) then the following result holds (Cummins 1986): 

[ A ;  x / Y l x [ P ;  X l Y l  =e [ ( A l v ) ( P / v ) ;  X l Y l .  (3.20) 
Y 

This has exactly the same form as that for products of orthogonal and symplectic 
characters of an infinite set of variables: 

(3.22) 

The difference between these expressions lies in their restriction to a finite number 
of variables. In the case of (3.21) and (3.22) non-standard terms on the right-hand 
side will have to be modified using (2.4) and (2 .5) .  In exactly the same manner 
non-standard terms in (3.20) will have to be modified by the use of (2.7) which is still 
to be derived. 
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4. Determinantal expansions 

The key to proving the modification rule for O( M )  is the exploitation of the determinan- 
tal expansion (King 1971): 

O(M)  [ A ]  = I[ lAi-'+i] + (1 - ail)[ lA;-'-i+z]l (4.1) 

where 

[1']=0 for t < O  (4.2) 

together with the fundamental modification rule 

[1"-']=&[1'] for all t. (4.3) 

[1 ']=0 for t > M. (4.4) 

This implies also that 

Equation (4.3) may be easily understood in terms of contracting the t indices of 
an antisymmetric tensor representation of O(M)  corresponding to [l '] with the Mth 
rank totally antisymmetric tensor E , , , ,  used in defining the determinant of a group 
element (for a more formal proof see Koike and Terada (1985)). The lack of such a 
tensor for OSp(M/N) ,  with N>O, and the consequent lack of a fundamental 
modification rule such as (4.3) accounts for the somewhat indirect proof of the 
OSp(M/ N) modification rule (2.7) presented here. 

The starting point is the analogue of (4.1): 

OSP(M/N)  [ A ]  = l[lAi-'+']+(l -Sll)[lA~-'- '+2]~. (4.5) 

In the case where the number of variables is infinite this follows from (4.1) because 
of the identical products (3.20) and (3.21) (Cummins 1986). Restricting to a finite set 
of variables preserves the form of (4.5), and in particular this identity is valid for 
non-standard [ A ;  x/y]. 

In order to make use of (4.5) note that the required modification rule (2.7) can 
first be recast in the form 

I c (-1)'Ji+'j2+ "'+'JkEk[A - h,, - h,, -. . . - hjk] = 0. 
k=O U) 

(4.6) 

Quite generally, however, the removal of an individual continuous boundary strip of 
length h, from FA amounts to replacing the parameter A: appearing in the j th  column 
of the determinantal expansion of [ A ]  by A: - h, and then reordering the columns of 
the determinant (King 1971). This reordering in the case of O ( M )  is based on the 
fact that [ A ]  depends on column lengths through the factor A: - j  in (4.1) and the 
antisymmetry of the determinant under transpositions of its columns. The same is true 
in the case of OSp(M/ N)  as can be seen from (4.5). Hence, making use of (4.5) for 
each of the supercharacters appearing in (4.6), the modification rule can be recast once 
again, this time as 

I[ 1*i7+7 + (1 - &,)[p;-1-1+*] - Ee,,([l  M - N - A ; + J - I  ] + ( I  -S,,)[1"-N-A'+J+1-2 ' I)l=O 
(4.7) 

where as usual 1 = N / 2 +  1 and 
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This is an identity of the form 

d e t 9 = 0  (4.9) 

where the ijth entry of the matrix 9 has been displayed and 1 S i, j S m where m 2 A I ,  
the number of columns of F". In fact, in what follows it is also necessary to ensure 
that m 3 N + 1 but this is easily done just by remembering that any columns of F A  
have length A I  = 0 for j > A l .  Notice also that the replacement of A I  by 

A! J J  - h.  = M - N -A!+2j - 2  (4.10) 

turns out to be exactly equivalent to modifying the entries of (4.5) as if they were 
characters of O( M - N )  to produce via (4.3) the modified terms appearing in (4.7). 

Now that the modification rule has been given in terms of the matrix 9 its validity 
will be established by first branching from OSp( M /  N )  to O( M )  x Sp( N )  and then 
finding an explicitly non-singular matrix A such that A 9  is manifestly singular. The 
branching from OSp( M /  N )  to O( M )  x Sp( N )  is accomplished by noting the special 
case of (3.19): 

00 

[ I P ] =  c ( - l )P-t[ l ' ]x(p-t)  
t= -m 

(4.11) 

and the restricting of the superdeterminant 

E = E x (0). (4.12) 

In (4.11) the sum has been extended from t = -a to t = +a through the use of (4.2) 
and (4.4). 

5. Derivation of the modification rule for OSp(M/N)  

The final ingredients are some results on characters of Sp(N)  which will be required 
later. This time the key is the determinantal expansion due to Weyl (1939, p 219) 

SP(N)  ( A )  = l {A i  - i+j}+ ( 1  - S , ) { A i  - i -j+2}1 (5 .1)  
where { p }  signifies the character of an irreducible representation of U( N )  restricted 
to Sp(N).  Expansion of this determinant with respect to the elements in the first row 
leads to the following expression (El Samra and King 1979) appropriate to characters 
specified by Young diagrams consisting of a single hook: 

4 

where on the right-hand side the U( N )  characters are given in terms of Sp( N )  characters 
by 

{SI = (s) (5 .3)  
OD 

{ l S } =  ( l s - 2 ' )  
t = O  

where of course 

(5.4) 

for s<o. (5.5) (1') = 0 
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In what follows non-standard expressions of the form (5.2) arise and it is important 
to note that (p, 1 q - l )  is Sp( N )  standard if and only if either p = 0 and q = 1 or p 2 1 
and 1 s q s N/2.  If p 2 1 and q 3 N / 2 +  1 the following modifications apply as can 
be seen from (2.5) with M replaced by N: 

(p, 1-l) = - (p ,  1 N + l - q )  for N / 2 s q - l <  N (5.6) 

and 

(5.7) ( p ,  lq-l)={~-1)P(0) for q - 1 2  N + 1 andp  = q -  1 - N 
for q - 1 3  N +  1 andp # q - 1 -  N. 

Finally for p G 0 and q - 1 2 0 

as can be derived from (5.2) or indeed from a consideration of (5.1). 

for 1 s i s m is given in terms of OSp( M /  N )  supercharacters by 
Now to the required proof. First define a column matrix Vp whose ith element 

%:=[lp-'+']+(l -s,l)[lp+'- '] (5.9) 

where p is any integer. The restriction to O(M) x Sp( N )  is accomplished using (4.11) 
and yields 

%?= C (-l)p--l+t-r[l l]  x ( (p- l+ i - t ) +  (1 - 6,1)(p+ I - i -  t)) 

so that from (5.3) 

Vf = 

m 

(5.10) 
r=-m 

m 

( -1)~- ' [1~]  x (-1)'+'({p - 1 + i- t}+(1-6,,){p+ 1 - i -  t}). (5.11) 
r=-m 

Next define a row matrix 9?q where q is any integer and whose ith element for 
1 C i s  m is given in terms of O( M) x Sp( N) characters by 

m 
I 

9?;= [ o ] x (1~ -~ -2~)= [o ]x { l q - i }  
s = o  

where use has been made of (5.4). Notice that 

for i = q 
q o  I '  for i >  q 

3i = 

= 1 ( - ~ ) ~ - - ' [ i ' ] x ( p - t ,  iq-') 
i= -m 

where use has been made of (5.2). 
To make contact with the matrix 9 it is to be noted that 

9 = % A ; - J + ~  - Ee,,%;M-N--h;+~-I 
u t  

whilst the matrix A used to show that 9 is singular is defined by 
= e k , m - I + 1 3 h - m + k + l .  

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 
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In these expressions i, j ,  k take on the values 1 ,2 ,  . . . , m whilst 1 = N / 2  + 1 and m s A I  
and m 2 N + 1. The matrix A then takes the form 

[O] x { lM-l} [O] x { 1 M - 2 }  . . .  
[O] x {1M-2} [ O ]  x (1M-3) . . .  

m A =  
0 
0 

[0]x{1"2} [O]x{l"*-'} * . .  [O]x{O} 0 * . .  0 
0 0 0 0 ' . .  0 

0 0 0 0 . . .  0 

N / 2 + 1  m - N / 2 + 1  
i > c  9 

m - N - 1  1 
N / 2 + 1  1 
N I 2  

(5.17) 

Since m has been chosen so that not only is m 3 A ,  but also m 5 N + 1 it is then easy 
to see that A is non-singular. 

The particular values of k and  j of interest in the product matrix 
m 

Akigo = gk] (5.18) 
1 = 1  

are those for which 

1 < k c  m - l + l =  m - N / 2  and 1 s j <  I =  N / 2 +  1. (5.19) 

These values of k can be conveniently subdivided into two sets according as 

l s k s m - N - 1  (5.20) 

or 

m -  N s k s  m -  N/2 .  (5.21) 

For the first of these, (5.201, the structure of A simplifies so that by (5.13) and (5.16), 
o r  equivalently from (5.18) 

Aki= % A - k + l .  

With this constraint (5.14), (5.15) and  (5.22) imply that 
oc 

g k ,  = ((-I)'-'[ 1'3 x ( p -  f ,  lm- ' ) - ( - l )  M - N - p - '  [ lM-']  
r=--oc 

x (M - N - p  - t, 1"-&)) 

(5.22) 

(5.23) 
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with p = A i  - j  + 1, and use has been made of both (4.12) and (4.3). For certain values 
of t it is clear that p - t S 0 and for others M - N - p  - r S 0 and it is then necessary 
to modify using (5.8). Moreover in all the remaining terms m - k 2 N + 1 so that use 
must then be made of (5.6). The surviving terms are very simple and give 
gJkj = [ y - k ]  x (0) 4- [ 1 N t p - m + k  ] x (0) - [ 1 N+p-m+k  ] x (0) - [ 1 m+p-k] x (0) (5.24) 

with the various contributions arising in turn from t = m + p  - k, t = N + p  - m + k, 
M - t =  N + p - m + k  and M - t = m + p - k .  It follows that 

(5.25) 

Turning to the second set of values of k as defined by (5.21) it follows from 
p k ,  = 0 for 1 s k c  m - N - 1 and 1 s j S 1 = N / 2 +  1. 

(5.14)-( 5.16) that 
00 

Pkj = (( -1)P-'[ 1'3 x (p - t ,  1m-k) - (-1) M - N - p - r  [ lM-'] x (M - N - p  - t, 
'=-a 

) - (- 1) M-N-P- '  [ 1 M - r ]  
N - m + k  + (-1)P-'[ 1'3 x ( p  - t, 1 

x (M - N - p  - t, 1 N - m ' k ) )  (5.26) 
where p = A; - j  + 1. Once more for certain values of t it is clear that p - t s 0 and for 
others M - N - p  - t S 0 and recourse must be made to (5.8). Now, however, for the 
remaining terms (5.21) implies N / 2  d m - k s N so that (5.6) must be used giving 

) (5.27) 
and 

( p - t , l m - k ) = - ( p - t ,  1 N - m + k  

( M - N - p - t ,  - ( M - N - p - t ,  l N - m i - k  >. (5.28) 
Thus the corresponding contributions from the first and third terms of (5.26) and from 
the second and fourth terms mutually cancel. Thus 

(5.29) 9 ,  = 0 
Combining (5.25) and (5.29) gives 

for m - N s k S m - N / 2  and 1 s j s 1 = N / 2  + 1. 

9 k j  = 0 for l s k s m - N / 2 a n d  l S j < N / 2 + 1  (5.30) 
so that A9 = 9 has the structure 

< > 
I = N / 2 + 1  ' -  m - N / 2 - 1  

It follows that 
det 9 = det A9 = 0. 

However A is non-singular so that, at last, 
det 9 = O  

m - N / 2  I (5.31) 

(5.32) 

(5.33) 
and the modification rule (4.7) and hence (2.7) is proved. 

It is perhaps worth pointing out that the proof depends on 1 (which we have chosen 
to be N / 2 +  1) being greater than N/2 ,  but the argument can be carried through for 
all 1 such that N / 2  < 1 S m. In particular (2.7) is valid for 1 = A ,  and it was in this 
form that the modification rule was conjectured elsewhere (King 1986) to be true. 
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The alternative conjecture of Farmer (1986b) can also be verified by noting that 
just as the iteration of (2.7) gives (2.10) so the iteration of Farmer’s more complicated 
looking formula also leads inexorably to (2.10). 

The great merit of (2.7) is that it is the direct generalisation to OSp( M/ N) of the 
result (2.4) appropriate to O ( M ) .  Indeed as pointed out earlier (2.4) can be recovered 
from (2.7) by simply setting N = 0. Furthermore, taking 1 = N / 2  + 1 leads to the smallest 
possible number of supercharacters in modifying a non-standard supercharacter, 
namely 2”*+’ - 1 if all the continuous boundary strips are removable. On the other 
hand, further modifications may be required, leading ultimately to (2.10). 

6. Typical and atypical supercharacters 

As pointed out by Kac (1978) a distinction must be drawn between typical and atypical 
irreducible representations. This distinction shows itself in dealing with and indeed 
in modifying non-standard supercharacters of OSp( M/ N )  even though the formula 
(2.7) is valid in all cases. 

To see the distinction it is necessary to discuss the geometry of the removal 
procedure. A necessary condition for a strip to be removable is that 

hj =2(hi  - j  + 1 )  - M + N > 0. (6.1) 
This quantity hj can be given a geometrical interpretation. To this end consider the 
diagonal d passing through the corner box in the non-standard portion F P  of F A ,  i.e. 
the box in row [M/2] + 1 and column N / 2 +  1 .  Then the distance from the box at the 
foot of the j th  column of F A  to any box on this diagonal in the kth row and lth column 
with k 6 hi and 12 j is given by 

dj = hi -[M/2]+ (N/2 - j ) +  1 (6.2) 
measuring distance upwards and to the right as shown below: 

Comparing (6.1) and (6.2) 

if M is even 
’ 2d,-1 if M is odd. 

h.  = { 2dJ 

The significance of this is firstly that the strip of length hj is removable only if dj 2 1 
and secondly that the removal process necessarily reduces by one the number of boxes 
on the diagonal d under consideration. It was this observation which led to the claims 
made in 0 2 regarding (2.10) and the connection between non-standardness and the 
Frobenius rank r of the non-standard part F P  of F A  shown in (2.11) with the diagonal 
d indicated. 
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A further significant geometrical aspect of the removal procedure concerns the 
regularity or otherwise of  FA-'^. This will be regular if and only if the strip extends 
from the foot of the j t h  column of F A  to the end of some row, say the ith. Thus if h, 
is to be removable there must exist i such that 

h, = A ; + A ,  - j -  i +  1 (6.4) 
where the expression on the right-hand side is the familiar hook length h,  associated 
with the box at the intersection of the ith row and j th  column. 

( A ,  - i +  l ) - ( A j  - j +  1) = N - M +  1. 
Combining (6.1) and (6.4) it follows that 

(6.5) 
The significance of this result arises from the distinction between typical and atypical 
irreducible representations. For standard supercharacters of OSp( M /  N )  specified by 
Young diagrams the atypicality conditions of Kac (1978) have been written down 
(Farmer and Jarvis 1984, Morel et a1 1984). Their results can be summarised by stating 
that the supercharacter [ A ]  of OSp(M/ N)  is typical if and only if none of the following 
atypicality conditions is satisfied: 

A :+v ,+N/2= i+ j - l  for 1 S i s  [M/2]  and 16jS N / 2  (6.6) 
A : + N / 2 + i + l =  v , + M + j  (6.7) 
with 

for 1 s i s [ M/2] and 1 ~j s N / 2  

A ,  - N / 2  if A, 3 N / 2  
v ’ = ( o  if A,  < N/2.  (6.8) 

Extending this terminology to include non-standard supercharacters [ A ]  it is clear that 
A,  3 N / 2  for all i = 1,2 , .  . . , [M/2]. Hence v, can be replaced in (6.6) and (6.7) by 
A,  - N / 2  giving 

(A, - i+ l ) - (A;- j+ l )=N-M+l  for l S i s [ M / 2 ]  and l s j 6  N/2. (6.10) 
The condition (6.9) can never be satisfied by a non-standard supercharacter since the 
left-hand side is the hook length h, of the box in the ith row and j th  column and is 
necessarily positive. Thus a non-standard supercharacter [ A ]  might be said to be 
typical if and only if none of the atypicality conditions (6.10) is satisfied. For the 
moment we do this although we are shortly led to a better definition of typicality in 
the non-standard case. Comparison with (6.5) shows that for a typical non-standard 
supercharacter none of the removable strips h, can extend from the j th  column with 
1 S j  S N / 2  to the ith row with 1 s i 6 [ M/2], i.e. pass from the leg of the diagram F A  
to the arm: 

( A ,  - i +  1) +(A:  - j +  1) = 0 f o r l s i s [ M / 2 ] a n d  l s j 6 ” / 2  (6.9) 

(6.11) 

Conversely for an atypical non-standard supercharacter at least one such removable 
strip does do so. 
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In the case of a typical non-standard supercharacter therefore all the strip removals 
must be one or other of the three forms shown below: 

( 1 1  ( 1 1 1  ( 1 1 1 1  (6.12) 
with either 

(i) i > [ M/2] and j> N/2  

(ii) 1 < i c [ M/2] and j> N/2  (6.13) 

(iii) i>[M/2]  and l < j < N / 2  

where all strips intersect the diagonal d as explained earlier. However, at the end of 
the iteration procedure this diagonal must be intersected at least r times where r is 
the non-standard rank of [ A ] .  Thus at least r strips must be removed. However, no 
more than r may be removed for otherwise a removal of the form (6.11) must occur, 
but that is not allowed for the typical non-standard supercharacters under discussion. 
The upshot of this is that either [ A ]  is identically zero or there exist precisely r removable 
strips and (2.10) yields just a single standard supercharacter on the right-hand side. 

Thus non-standard typical supercharacters [ A ]  do indeed modify to give standard 
supercharacters [p] which are themselves typical since we still have pi 2 N/2  and 
(6.9) and (6.10) are never satisfied with A replaced by the new partition p. Furthermore 
it is not difficult to see that for each such [ A ]  all the removals are of the form specified 
by (6.13) (i) and (ii) or all of the form specified by (6.13) ( i )  and (iii). Moreover in 
these two cases the final modification can be seen to be equivalent to modifying the 
portion of F A  to the right of the leg of width N/2  with respect to O ( M )  and the 
conjugate of the portion below the arm of width [M/2] with respect to Sp(N) or 
O( N + 1 )  according as M is even or odd, respectively. This confirms the result of 
Farmer (1986a) expressed in this way. It remains to be proved that the standard typical 
supercharacters [ A ]  do indeed coincide with the supercharacters of typical irreducible 
representations derived by Kac (1978), although it can be expected with considerable 
confidence that they do coincide as is implicit in previous publications (Farmer and 
Jarvis 1984, Morel er a1 1985). 

It should be noted that what we have previously called an atypical non-standard 
supercharacter [ A ]  possessing non-standard rank r and a total of s removable strips 
under modification by (2.10) yields zero i f s  < r, a single typical standard supercharacter 
if s = r and a linear combination of atypical standard supercharacters if s > r. This 
observation leads us to the improvement in definition referred to earlier, namely a 
supercharacter [ A ]  of OSp(M/ N) is said to be 

standard if r S 0 and non-standard if r > 0 

and 

typical if r = s, atypical if r < s and zero if r > s 
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where r is the OSp(M/N)  non-standard rank of [ A ]  defined by 

r = card{j: A i  3 [ M/2] - N / 2 +  j, j = 1,2, . , .} - N / 2  

3119 

(6.14) 

and s is the number of removable strips of [ A ]  defined by 

s = card{(i, j); 2(Aj - j +  1) - M + N = A,  + A: - i - j +  1 > 0).  (6.15) 

7. Application of the modification rule 

In conclusion we illustrate the use of the modification rules in dealing with OSp( M /  N )  
non-standard supercharacters. The first example is provided by the use of the branching 
rule 

U ( M / W + O S P ( M / N )  { A ) +  [AID1 (7.1) 

which follows from (3.18). The supercharacter {322} of U(3/2) is both standard and 
typical. However on restricting to OSp(3/2) (7.1) gives 

{322}+ [322]+[32]+[221]+[3]+[21]+[1]. (7.2) 

The first three supercharacters are non-standard typical supercharacters of OSp(3/2) 
and the use of (2.7) gives 

{32*}+ E [  12] + 4311 + s[212] + [3] + [21]+ [ 11. (7.3) 

As a second example non-standard supercharacters arise through the application 
of the product rule (3.20). This is illustrated by 

[2] x [2] = [4] + [ 3 13 + [22] + [2] + [ 12] + [O] (7.4) 

where [22] is non-standard and atypical in OSp(3/2). Carrying out the modification 
using (2.7) gives 

[2] x [2] = [4] + [3 13 + E [21] - E [  11 + E2[O] + [2] + [ 17 + [O]. (7.5) 

Clearly the results (7.3) and (7.5) still need careful interpretation. They both involve 
standard but atypical supercharacters. These are an indication that not fully reducible 
representations may be present reinforced by the minus sign appearing in (7.5) which 
makes it manifestly clear that not all supercharacters, even when standard, correspond 
in a one-to-one way with irreducible representations. Indeed in this example, [21] - [ 11 
is the supercharacter of a single irreducible atypical representation of OSp(3/2) with 
highest weight [ l ]  x (2), expressed in terms of O(3) x Sp(2) characters (Farmer and 
Jarvis 1984, Morel er a1 1985). 

This illustrates that, although the modification rule we have derived applies to all 
non-standard supercharacters whether typical or atypical, it cannot by its very nature 
give global information on the non-fully reducible problem in OSp( M /  N) since it 
only involves functions, supercharacters, evaluated on O( M )  x Sp( N). It is hoped, 
however, that the detailed knowledge that we have obtained concerning the modification 
rules will be of use in the study of atypical irreducible representations. 
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